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Abstract. Nucleation on top of two-dimensional islands with step edge barriers is investigated using scaling
arguments. The nucleation rate is expressed in terms of three basic time scales: the time interval between
deposition events, the residence time of atoms on the island, and the encounter time required for i∗ + 1
atoms forming a stable nucleus to meet. Application to the problem of second layer nucleation on growing
first layer islands yields a sequence of scaling regimes with different scaling exponents relating the critical
island size, at which nucleation takes place, to the diffusion and deposition rates. Second layer nucleation
is fluctuation-dominated, in the sense that the typical number of atoms on the island is small compared to
i∗+1, when the first layer island density exponent χ satisfies χ(i∗+1) < 2. The upper critical nucleus size,
above which the conventional mean field theory of second layer nucleation is valid, increases with decreasing
dimensionality. In the related case of nucleation on top of multilayer mounds fluctuation-dominated and
mean field like regimes coexist for arbitrary values of the critical nucleus size i∗.

PACS. 68.35.Fx Diffusion; interface formation – 81.15.Aa Theory and models of film growth –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

Atomistic nucleation theory was developed in the sixties
and seventies in response to the realization that critical
nuclei of atomic dimensions are common in far from equi-
librium thin film growth [1–3]. During the past decade the
subject has experienced a vigorous renaissance, driven by
the invention of atomic scale imaging techniques as well as
by the availability of realistic large scale simulations [4].
While this has resulted in a wide range of new theoreti-
cal developments, the classical theory has stood the test
of time remarkably well. This is surprising because clas-
sical nucleation theory relies, in the jargon of statistical
mechanics, on an approximation of mean field type, in
the sense that it considers only the evolution of spatially
averaged concentrations of the different surface species –
adatoms and clusters – and thereby neglects effects of spa-
tial correlations and fluctuations.

It was recently pointed out that the classical theory
manifestly fails in describing nucleation events on top of
islands bounded by strong step edge barriers [5,6]. The
onset of second layer nucleation on top of the first layer is-
lands is an important factor determining the growth mode
and morphology of multilayer films. Tersoff and cowork-
ers [7] developed a theory of second layer nucleation based
on the classical mean field estimate

ωmf ∼ νAni
∗+1 (1)

for the rate ω of nucleation events on the island, in terms of
the in-layer hopping rate ν, the island area A, the adatom

density n and the size i∗ of the critical (= largest unstable)
cluster. In references [5,6] it was shown that for i∗ = 1, 2
the mean field estimate disagrees with microscopic con-
siderations [8–10] and computer simulations. The failure
of mean field theory was qualitatively attributed to the
small number of atoms typically present on the island,
and the associated large fluctuations in the occupancy of
the island.

The question then arises whether mean field behavior
may be recovered at larger values of the critical nucleus
size, where nucleation necessarily involves a greater num-
ber of atoms, and thus fluctuation effects should be re-
duced. A partial answer to this question was provided in
recent work by Heinrichs, Rottler and Maass (HRM) [11].
They distinguish between two different nucleation modes:
In the fluctuation-dominated mode the mean number of
adatoms on the island (in the quasi-stationary state prior
to nucleation) is much smaller than the number i∗+ 1 re-
quired for nucleation, and therefore nucleation is a rare,
large fluctuation, while in the mean field regime, which
corresponds to the classical approach of [7], the mean num-
ber of adatoms exceeds i∗+ 1. Consistency considerations
then show that second layer nucleation on top of first layer
islands is fluctuation-dominated for i∗ ≤ 2 and mean field
like for i∗ ≥ 3.

In this paper I elaborate on the observations of HRM,
with the goal of further clarifying the role of fluctuations
in second layer nucleation. I begin by rederiving the main
results of HRM within the approach of [6], which relies
on expressing the nucleation rate in terms of the basic
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time scales of the process. While less quantitative than
the treatment of [11], this provides, perhaps, a somewhat
more transparent and unified view. A simple, universal cri-
terion for fluctuation-dominated second layer nucleation
is found which involves the first layer island density ex-
ponent and the critical nucleus size (Eq. (28)). I then ex-
tend the analysis to d-dimensional nucleation, finding the
same general structure as in the two-dimensional case, but
with a decreasing influence of fluctuations with increasing
d; as a byproduct, I recover the expression for the one-
dimensional first layer island density exponent recently
derived in reference [12]. Finally, I generalize the theory
of nucleation on top of multilayer mounds developed in [6]
to i∗ > 1. In contrast to the case of nucleation on first layer
islands, here fluctuation-dominated and mean field like nu-
cleation regimes are found to coexist for arbitrary values
of i∗. This illustrates that the importance of fluctuations
depends crucially on the growth situation.

2 Stationary rates of fluctuation-dominated
nucleation

We consider a two-dimensional island of fixed linear ex-
tension L. Atoms are deposited onto the island at rate
F , they migrate on the island with an in-layer hopping
rate ν and descend from the island at the inter-layer hop-
ping rate ν′. The mean time interval between subsequent
arrivals of atoms on the island is then

∆t ∼ 1
FL2

(2)

and the mean residence time of an atom on the island in
steady state is of the form [5,6,11]

τ =
aL2

ν
+
bL

ν′
, (3)

where a and b are geometry-dependent constants. The first
term on the right hand side of (3) is of the order of the
traversal time τtr ∼ L2/ν required for the atom to migrate
across the island, while the second term describes the in-
crease in the residence time due to the step edge barriers.
The second term dominates if L� lES, where

lES ≈ ν/ν′ (4)

is the Ehrlich-Schwoebel length [9].
The stationary mean number of atoms on the island

is given by τ/∆t [6,11], and hence the condition for the
fluctuation-dominated mode of HRM reads

τ

∆t
� 1. (5)

It will turn out to be useful to write this in the form
L� LF , where the flux scale LF is given by

LF ∼
{

(ν′/F )1/3 : L� lES

(ν/F )1/4 : L� lES.
(6)

For given L, ν and ν′, equation (5) can always be satisfied
by making the flux sufficiently small.

Nucleation with a critical nucleus size i∗ is treated
within the “noninteracting particle model” [11], in which
the lifetimes of all unstable clusters are assumed compa-
rable to the inverse hopping rate 1/ν. Then the third rel-
evant time scale in the problem, in addition to (2) and
(3), is given by the encounter time τenc required for the
i∗ + 1 atoms to find each other on the island. In order of
magnitude we have [11]

τenc ∼ L2i∗/ν. (7)

A simple derivation is given below in Section 4.
Under the condition (5), each nucleation event is

uniquely associated with the deposition of the (i∗ + 1)th
atom. The number of nucleation events per unit time can
then be written as

ω = pnuc/∆t, (8)

where pnuc is the probability for a freshly deposited atom
to participate in a nucleation event. The latter is generally
of the form

pnuc = pi∗+1 penc, (9)

where pi∗+1 denotes the probability that i∗ atoms were
present on the island prior to the arrival of the (i∗+ 1)th,
and penc is the probability that the i∗+1 atoms encounter
each other before one of them leaves the island again. The
quantity pi∗+1 is given by [6]

pi∗+1 =
1
i∗!

( τ

∆t

)i∗
. (10)

The encounter probability can be estimated as [11]

penc ≈ 1− e−τ/τenc (11)

where for simplicity we have equated the residence time
of the i∗ + 1 atoms with that of a single atom (in fact
the two differ by a factor i∗ + 1). Thus penc is of order
unity for τ/τenc � 1 and of the order penc ≈ τ/τenc when
τ/τenc � 1.

In the case i∗ = 1 the encounter time (7) is of the same
order as the traversal time L2/ν, whereas the residence
time (3) is of the order of τtr or larger. Thus one always
has penc = O(1) and pnuc ≈ p2 [6]. In contrast, for i∗ > 1 it
is possible to have a transition from τ � τenc to τ � τenc

with increasing island size. This obviously requires that
ν/ν′ � 1, so that τ ∼ L/ν′ � τenc for small islands, and
occurs at the characteristic length scale

L× ∼ (ν/ν′)1/(2i∗−1). (12)

We note that this is small compared to the Ehrlich-
Schwoebel length, and therefore the transition to
encounter-limited nucleation occurs before the step edge
barriers become irrelevant, in the sense that τ becomes of
the same order as τtr.
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In the encounter-limited regime the expression (8)
agrees in order of magnitude with the mean field estimate
(1). To see this, note that the adatom density on the island
is of order τ/(∆tL2) = Fτ , and hence

ωmf ∼ νL2
( τ

L2∆t

)i∗+1

≈ 1
∆t

( τ

∆t

)i∗ τ

τenc
≈ pi∗+1 penc

∆t
·

(13)

In this sense the mean field approach remains applicable
also outside of its strict range of validity [11].

We summarize the preceding considerations in the fol-
lowing three expressions for the fluctuation-dominated nu-
cleation rate, which apply with increasing island size L:

ω ≈ 1
∆t

( τ

∆t

)i∗
∼ F (F/ν′)i

∗
L3i∗+2

L� L× (regime II) (14)

ω ≈ 1
τenc

( τ

∆t

)i∗+1

∼ F (F/ν′)i
∗
(ν/ν′)Li

∗+3

L× � L� lES (regime III) (15)

ω ≈ 1
τenc

( τ

∆t

)i∗+1

∼ F (F/ν)i
∗
L2i∗+4

L� lES (regime IV). (16)

Regime III does not exist for i∗ = 1. For i∗ > 1, the
encounter-limited regimes III and IV extend also into
the mean field realm, while regime II occurs only in the
fluctuation-dominated nucleation mode.

Note that equations (14) and (15) correspond to the
regimes II and I identified in [6] for i∗ = 2. Here we prefer
to enumerate the regimes in accordance with HRM [11].
Their regime I will be dealt with below in Section 3.2.

3 Consistent scaling regimes
in two dimensions

While equations (14, 15, 16) provide, in the specified
ranges of parameters, valid expressions for the nucleation
rate on top of an island of given size, in their application to
a specific growth situation additional consistency require-
ments arise [11]: when a given expression for ω is used to
compute the island size at which nucleation occurs, it has
to be checked that this island size does indeed lie in the
appropriate range.

In this section we derive the resulting scaling regimes
for second layer nucleation in two dimensions. Following
earlier work [5–7,11] we assume a population of equal sized
first layer islands of density N . The island size increases
with time t or coverage θ = Ft according to the growth
law

L(t) ∼
√
θ/N. (17)

For a nucleation rate of the form

ω = FΩLk (18)

the critical island size at which a second layer nucleus
forms is then given by [6]

Lc ∼ (NΩ)−1/(k+2). (19)

We further introduce the notation [11]

Γ ≡ ν/F, α ≡ ν′/ν = l−1
ES , (20)

where usually Γ � 1, α� 1. The first layer island density
is then of the order of

N ∼ Γ−χ, (21)

which defines the island density exponent χ. In standard
nucleation theory [3] it is given by the expression

χ =
i∗

i∗ + 2
· (22)

At the moment we will however leave χ unspecified to al-
low for the possibility of different first layer nucleation
mechanisms. Generalizations of (22) will be derived in
Section 4.

3.1 Stationary nucleation regimes

Inserting equations (14, 15, 16) into (19) one obtains ex-
pressions for the critical island size of the general form [11]

Lc ∼ Γ γαµ, (23)

where the exponents µ and γ are given by

γ =
χ+ i∗

3i∗ + 4
, µ =

i∗

3i∗ + 4
(regime II) (24)

γ =
χ+ i∗

i∗ + 5
, µ =

i∗ + 1
i∗ + 5

(regime III) (25)

γ =
χ+ i∗

2i∗ + 6
, µ = 0 (regime IV). (26)

Consider first regime II. Consistency requires the in-
equalities Lc ∼ αµΓ γ � L× ∼ α−1/(2i∗−1) and αµΓ γ �
LF ∼ (αΓ )1/3 to be satisfied simultaneously, which
implies

Γ−(1−3γ)/(1−3µ) � α� Γ−γ/(µ+1/(2i∗−1)). (27)

Since α � 1 and Γ � 1, these inequalities can be sat-
isfied only if the exponent of Γ on the left hand side is
smaller than the one on the right hand side. Inserting the
expressions (24) this is found to lead to the condition

χ <
2

i∗ + 1
· (28)

The analysis of regime III, based on the requirementL× �
Lc � LF , yields the same condition (28), while in regime
IV the relevant inequalities lES � Lc � LF translate into

χ <
3− i∗

2
· (29)
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Using the expression (22) for χ, we see that the
fluctuation-dominated regimes II and III become incon-
sistent at i∗ = i∗c1 = (1 +

√
17)/2 ≈ 2.56. For larger i∗

regime III survives in its mean field version, while regime
II disappears. In regime IV the transition from fluctuation-
dominated to mean field behavior occurs at i∗ = i∗c2 = 2;
in this regime the critical island size is of the order of the
first layer island distance, γ = χ/2, and hence the problem
really reduces to that of first layer nucleation.

The general form of the conditions (28, 29) illustrates
that the upper critical nucleus size, at which the mean field
nucleation mode sets it, is intimately linked to the expres-
sion for the first layer island density exponent. Scenarios
different from the standard case (22) can arise if, due to
e.g. metastable clusters [6] or surface reconstruction [13],
the critical nucleus on the substrate is smaller or larger
than that on the island. Another example of nonstandard
behavior is kinetically limited first layer nucleation, where
equation (22) is replaced by [14] χ = 2i∗/(i∗ + 3) and the
upper critical nucleus sizes shift to i∗c1 =

√
3 ≈ 1.732 and

i∗c2 =
√

13− 2 ≈ 1.6055. In addition the growth law (17)
plays an important role, as will be discussed below.

3.2 Nonstationary nucleation

For very strong step edge barriers the residence time τ
becomes the largest time scale in the problem, and may
effectively be set to infinity [6,11]. In this situation all
atoms deposited on the island remain there, and a sta-
tionary state where deposition and loss of adatoms com-
pensate each other is never reached. A distinction between
fluctuation-dominated and mean field nucleation scenarios
is nevertheless possible [11]: In the first case nucleation oc-
curs as soon as the (i∗ + 1)th atom arrives on the island,
while in the second case many more atoms have to be
deposited.

Using the growth law (17) it is easy to show that the
time required to deposit a few (i.e., i∗ + 1) atoms on the
island is

τdep ∼ N1/2/F. (30)

At this point the island size is of the order N−1/4, corre-
sponding to exponents

γ = χ/4, µ = 0, (regime I/fl) (31)

for the fluctuation-dominated part of regime I. To see
whether nucleation is actually fluctuation dominated, the
time scale (30) is to be compared to the encounter
time (7), evaluated at the island size N−1/4; fluctuation-
dominated nucleation occurs if τenc � τdep. Once more
this yields the condition (28), which can therefore be re-
garded as a universal criterion for fluctuation-dominated
second layer nucleation. For χ > 2/(i∗+1) mean field the-
ory can be used to compute the nucleation rate, and one
arrives at the scaling exponents [11]

γ =
χ(i∗ + 2)− 1

2i∗ + 6
, µ = 0 (regime I/mf). (32)
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Fig. 1. Scaling regimes for second layer nucleation in two
dimensions. Each regime is defined by relations of the form
Γ−δk � α � Γ−δk′ , and the full lines show how the bound-
aries − lnα/ lnΓ = δk vary with the critical nucleus size
i∗. The dashed lines indicate transitions between fluctuation-
dominated (fl) and mean field like (mf) subregimes. The ex-
plicit expressions for the boundaries are δ1 = 1 − 3χ/4 (I/fl
→ II); δ2 = (χ + i∗)(2i∗ − 1)/(2i∗(i∗ + 1) + 4) (II → III/fl);
δ3 = (3χ + 2i∗ − 5)/(2i∗ − 2) (III/fl → III/mf); δ4 = (5 +
i∗ − 2χ)/(6 + 2i∗) (I/mf → III/mf); δ5 = χ/2 (III → IV).
For the island density exponent the conventional expression
χ = i∗/(i∗ + 2) was used.

A graphical representation of the sequence of scaling
regimes as a function of i∗ is provided in Figure 1.

While in the stationary nucleation regimes of Sec-
tion 3.1 the criterion (28) appears in a rather indirect
way, in the nonstationary case it has a straightforward in-
terpretation in terms of a comparison of the time scales
τdep and τenc. This is easily generalized to first layer island
growth laws of the form

L(t) ∼ N−1/2θβ (33)

which lead to

χ <
2β + 1
i∗ + 1

(34)

instead of (28).

4 Dimensionality dependence

In statistical physics fluctuation effects are typically more
prominent in low spatial dimensionalities. It is therefore
of some interest to repeat the above considerations for
growth of d-dimensional islands on a d-dimensional sub-
strate. The residence time is then still given by an expres-
sion of the form (3), while the interarrival time becomes

∆t ∼ 1
FLd

· (35)

To estimate the encounter time, it is useful to visualize the
trajectories of the i∗+ 1 diffusing adatoms in a configura-
tion space of dimensionality d(i∗ + 1), where the motion
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is restricted to a region of linear extent L. Nucleation oc-
curs on a d-dimensional submanifold, the codimension of
which is di∗. We are thus dealing with a first passage prob-
lem in di∗ dimensions, where the encounter time plays the
role of the mean first passage time. This implies that

τenc ∼
{
L2/ν : di∗ < 2
Ldi

∗
/ν : di∗ ≥ 2.

(36)

Since the residence time is always at least equal to the
traversal time L2/ν, it follows that encounter-limited nu-
cleation in the sense of τenc � τ is possible only for di-
mensionalities d > 2/i∗. This recovers the upper critical
dimension dc = 2/i∗ for diffusion-limited reactions of i∗+1
particles [12,15].

4.1 Island density exponent in d dimensions

As a warm-up exercise we derive here a formula for the
exponent χ of the first layer island density valid for gen-
eral d. The appropriate expression for the nucleation rate
is (16), which is now to be interpreted as the rate of nu-
cleation in a region of size L. The distance lD ∼ N−1/d

between first layer nuclei is determined by the condition
that there should be one nucleation event per area ldD dur-
ing the monolayer deposition time 1/F , i.e.

ω(lD)/F = O(1). (37)

For di∗ ≥ 2 this yields

χ =
di∗

d+ 2 + 2i∗
(di∗ ≥ 2), (38)

which agrees with (22) for d = 2 and with the expression
χ = i∗/(3 + 2i∗) derived by Kallabis, Krapivsky and Wolf
for d = 1, i∗ ≥ 2 [12]. For di∗ < 2 we obtain instead

χ =
di∗

(d+ 2)i∗ + d
(di∗ < 2). (39)

This case is physically realized only for d = i∗ = 1, where
(39) reduces to the well-known value χ = 1/4 [12,16].

These results are easily generalized to the growth of
islands of (fractal or integer) dimensionality d′ on a d-
dimensional substrate. In that case the time of interest is
not the monolayer growth time 1/F , but rather the time
required to cover a fraction of the substrate which is of
order unity. While the true coverage is related to island
density and island size through θ ∼ NLd

′
, the covered

fraction of the d-dimensional substrate is θd ∼ NLd ∼
N1−d/d′θd/d

′
. Setting the inverse nucleation rate equal to

the time in which θd = O(1) is reached then yields the
condition

ω(lD)/F ∼ ld−d
′

D , (40)

which for di∗ ≥ 2 implies the island density exponent

χ =
di∗

2(i∗ + 1) + d′
(di∗ ≥ 2). (41)

For d = 1, 2 this agrees with the general expression given
in [12].

4.2 Second layer nucleation in d dimensions

For compact d-dimensional first layer islands the growth
law (17) generalizes to

L(t) ∼ (θ/N)1/d, (42)

and the critical island size for a nucleation rate of the form
(18) becomes

Lc ∼ (ΩN)−1/(d+k). (43)

Using the expressions (14, 15, 16) for the nucleation rates
together with (35, 36) and (42) it is then straightforward
to repeat the considerations of Section 3. Rather than de-
veloping in detail the general case, we focus here on the
transition between fluctuation-dominated and mean field
nucleation regimes.

The analysis is most transparent in the nonstationary
case. One finds that the deposition time is given by (30)
for all d, and the critical island size for second layer nu-
cleation is

Lc ∼ N−1/2d ∼
√
lD ∼ Γχ/2d (regime I/fl). (44)

Using this to evaluate the encounter time (7), it turns
out that nucleation is always fluctuation-dominated for
di∗ < 2, while for di∗ ≥ 2 the condition for the fluctuation-
dominated regime is again given by the universal relation
(28). The same relation also governs the disappearance of
the fluctuation-dominated regime II for general d.

Setting the island density exponent (38) equal to
2/(i∗ + 1) then yields the expression

i∗c1 =
1
2d

(4− d+
√

8d2 + (d+ 4)2) (45)

for the upper critical nucleus size at which the fluctuation-
dominated regimes I/fl, II and III/fl disappear. This is
a decreasing function of d which approaches i∗c1 = 1 for
d → ∞. As expected, the fluctuation-dominated regime
becomes smaller in higher dimensions.

To analyse the transition to mean field nucleation in
regime IV we use the fact that the critical island size for
second layer nucleation is of the order of the first layer
island spacing, i.e. γ = χ/d and Lc ∼ lD. The condition for
fluctuation-dominated nucleation therefore simply reads
τ/∆t ∼ Fl2+d

D /ν � 1, or χ < d/(2 + d). This clearly
always holds for the expression (39), while for (38) it is
true provided i∗ < i∗c2 with

i∗c2 = 1 + 2/d. (46)

Again i∗c2 → 1 for d→∞, and i∗c2 < i∗c1 for all d.
The expressions for the scaling exponents γ and µ in

the remaining regimes read

γ =
χ(i∗ + 2)− 1
d(i∗ + 3)

, µ = 0 (regime I/mf) (47)

γ =
χ+ i∗

(d+ 1)i∗ + 2d
, µ =

i∗

(d+ 1)i∗ + 2d
(regime II)

(48)

γ =
χ+ i∗

i∗ + 2d+ 1
, µ =

i∗ + 1
i∗ + 2d+ 1

(regime III).

(49)
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Fig. 2. Scaling regimes for second layer nucleation in one
dimension. The explicit expressions for the boundaries are
δ1 = 1− χ (I/fl → II and I/mf → III/mf); δ2 = (χ+ i∗)(i∗ −
1)/(i∗(i∗+1)+2) (II→ III/fl); δ3 = 1−2(1−χ)/(i∗−1) (III/fl
→ III/mf); δ4 = χ (III→ IV). For the island density exponent
χ the one-dimensional expressions derived in Section 4.1 were
used.

The scaling regimes for the one-dimensional case are
shown in Figure 2. The upper critical nucleus sizes are
i∗c1 = (3 +

√
33)/2 ≈ 4.372... and i∗c2 = 3.

5 Nucleation on the top terrace of a mound

In multilayer growth, the suppression of interlayer trans-
port leads to the formation of pyramidal mounds [17]. For
strong step edge barriers, in the sense that lES exceeds the
distance lD between first layer islands, the mound sepa-
ration is set by lD and remains constant during growth
[18,19]. In this growth regime the mounds are wedding-
cake-like stacks of islands upon islands, with a charac-
teristic up-down-asymmetry: while the valleys between
mounds are deep crevices, at the hilltops flat terraces of
a characteristic size Ltop < lD are found [10,19]. Ltop

is determined by the nucleation rate on the top terrace
through the requirement that on average one nucleation
event should occur during the growth of a monolayer, so
that [6,10]

ω(Ltop)/F = O(1). (50)

For a nucleation rate of the general form (18) this implies

Ltop ∼ Ω1/k. (51)

A more precise calculation of the factor of proportionality
can be found in [6].

As in the case of second layer nucleation, application of
the expressions (14, 15, 16) for the nucleation rate yields
estimates for the top terrace size of the form

Ltop ∼ Γ γ
′
αµ
′

(52)

where the scaling exponents γ′ and µ′ depend on i∗ and on
the scaling regime in question. Inspection shows that the
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Fig. 3. Scaling regimes for nucleation on top of mounds.
The explicit expressions for the boundaries are δ1 = (2i∗ −
1)i∗/(2i∗(i∗ + 1) + 2) (II → III/fl); δ2 = 1 − 3/2i∗ (III/fl →
III/mf); δ3 = χ/2 (III → IV).

equivalent of the nonstationary regime I discussed above
in Section 3.2 is trivial in the case of mound growth: when
α � Γ−1, the top terrace size becomes comparable to
the lattice constant, Ltop = O(1), corresponding to pure
statistical Poisson growth [18].

The fluctuation-dominated regime II with scaling ex-
ponents

γ′ = µ′ =
i∗

3i∗ + 2
, (regime II, mounds) (53)

covers the parameter range Γ−1 � α � Γ−δ1 , where
δ1 = i∗(2i∗− 1)/(2i∗(i∗+ 1) + 2) < 1 for all i∗. In marked
contrast to second layer nucleation, here regime II exists
for all i∗.

For Γ−δ1 � α� Γ−χ/2 nucleation is governed by the
exponents of regime III,

γ′ =
i∗

i∗ + 3
, µ′ =

i∗ + 1
i∗ + 3

(regime III, mounds). (54)

This regime is fluctuation-dominated for i∗ < 2, while
for i∗ ≥ 2 it splits up into fluctuation-dominated and
mean field like subregimes with identical scaling expo-
nents. Both subregimes exist for all i∗ ≥ 2, though the
fluctuation-dominated part becomes very small for large
i∗. For α > Γ−χ/2 one enters the regime of weak step edge
barriers, where lES < lD and the shape and evolution of
the mound morphology are qualitatively different from the
wedding cake regime discussed here [9,10,17]. A pictorial
representation of the scaling regimes is given in Figure 3.

6 Summary

The goal of this paper has been to extend the analysis of
[6] to arbitrary critical nucleus sizes, as well as to clarify
the relationship between the recent stochastic approaches
to second layer nucleation [5,6,11] and the earlier mean
field theory of reference [7]. The essential new ingredi-
ent that enters the problem for i∗ > 1 is the encounter
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time τenc, which may become larger than the residence
time τ . The mean field approach is valid, at least as far
as the values of scaling exponents are concerned, when
τ � τenc, but it fails when τ ≥ τenc. Apart from recovering
the results of [11], the analysis has revealed a remarkably
simple and universal criterion for fluctuation-dominated
second layer nucleation, equation (28), which may be use-
ful in situations where nucleation is governed by different
mechanisms in the first and second layer. Furthermore I
have verified the expectation that fluctuation-dominated
nucleation should be more prominent in low dimension-
alities, and I have shown that no upper critical nucleus
size (beyond which fluctuations can be neglected) exists
for nucleation on the top terrace of a mound.

I am grateful to S. Heinrichs, P. Maass and T. Michely for
useful discussions. This work was supported by DFG within
SFB237.
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